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Fluxes and the Elimination of Fast-Relaxing Variables 
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The behavior of fluxes under elimination of fast-relaxing variables from linear 
dynamical evolution equations is investigated. It is found that the fluxes corre- 
sponding to evolution equations which result from eliminations do not in general 
yield an adequate representation of the fluxes corresponding to the evolution 
equations from which the variables have been eliminated. In all examples 
considered, a discrepancy occurs when the eliminations reduce a cycle with 
nonzero thermodynamic force to a single state. The entropy production corre- 
sponding to the evolution equations resulting from the eliminations lacks terms 
corresponding to such cycles. 

KEY WORDS: Fast-relaxing variables; adiabatic elimination; master equa- 
tion; first-order kinetics; fluxes; entropy production. 

1. INTRODUCTION 

The equations describing the dynamical evolution of the population proper- 
ties of a system often allow for a classification of the population variables 
on the basis of the orders of magnitude of their relaxation times. If two or 
more time scales are well separated, the dynamical evolution of the popula- 
tion properties may be adequately described for long times by a simpler set 
of equations obtained by elimination of the faster-relaxing variables. Such 
eliminations (explicit and implicit) are common procedures in many fields, 
especially in chemical kinetics, (l) where one may refer to transient inter- 
mediates and fast equilibria. (2) They have also been an aid in developing 
laser theory. (3'4) A formal footing for the elimination techniques has been 
provided by Haken in the context of master equations (3) and Fokker- 
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Planck equations. (3'5) In reference to the former, Schnakenberg (6) has 
pointed out that most master equations are the result of several implicit 
eliminations. 

For many systems, the rates of processes occurring in the system are of 
as great interest as the population properties, or perhaps even of greater 
interest. This is especially the case for systems with nonequilibrium station- 
ary states. The rates are normally given as fluxes defined in terms of the 
variables and parameters of the dynamical evolution equations for the 
population properties. Thus, in the case of the elimination of fast-relaxing 
variables there will be a set of fluxes J corresponding to the original 
dynamical evolution equations, and anotlaer set of fluxes Y Corresponding 
to the dynamical evolution equations obtained from the original ones by 
the elimination of fast-relaxing variables. As noted above, the elimination 
leaves the population properties adequately described by the resulting 
evolution equations for long times. However, since this is the criterion for 
the validity of the elimination, it is not clear that the fluxes, originally given 
as the J's,  are still adequately represented by the Y's (for long times, of 
course). 

In more formal terms, we have an original set of dynamical evolution 
equations in terms of the population variables Pi with corresponding fluxes 
J(p~). Upon the elimination of fast-relaxing variables, we obtain a new set 
of evolution equations in terms of new population variables qk with 
corresponding fluxes Y(q~). Now the transformation Pi ~ qk allows us to 
write the J ' s  as functions of the q~. The question being asked here then 
becomes: may the J(qk) be adequately represented by the Y(qk) for long 
times? 

The purpose of this paper is to show that the answer to this question is, 
in general, no. This will be accomplished by way of a few simple examples 
involving linear dynamical evolution equations (master or first-order kinetic 
equations). It will be argued that the answer "no" arises only for systems 
with nonequilibrium stationary states when the elimination of fast-relaxing 
variables also eliminates a cycle with nonzero thermodynamic force from 
the system's kinetic diagram. (2) It follows, then, that the entropy produc- 
tion of the Glansdorff-Prigogine stability criterion for the dynamical 
evolution equations resulting from the elimination of fast-relaxing variables 
will be lacking term(s) corresponding to the eliminated cycle(s). 

. THE BASIC EQUATIONS 

We consider dynamical evolution equations of the form 
N N 

d 
bi  = p ,  = - 51. ( . y p ,  - aj ,pj) ,  p i =  1 

j=l i=1 
j ~ i  

(1) 
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where pi is the probability that the system is in state i of N possible states, 
and a/j is the transition probability per unit time from state i to state j .  To 
allow for transitions between states i and j via different pathways, (2'6) we 
write 

n~ 

a,j = aA,  ), = nj; (2)  
o~=1 

where a~j(a) is the transition probability per unit time from state i to s ta te j  
via pathway a. The generalization in Eq. (2) is necessary for a proper 
definition of the transition fluxes: 

Jij(  ol) = - J j i ( o l ) ~ -  ay( a)  p, - aji( ol) p J. ( 3 )  

which is the net rate of transition from state i to state j via pathway a. A 
particularly clear example with multiple pathways may be found in Ref. 6. 
One may also be convinced of the necessity of Eq. (2) by noting that 
detailed balance at equilibrium requires that all Jg(a)  = 0J 2'6) 

Upon the elimination of fast-relaxing variables from Eq. (1), the new 
evolution equations become 

M M 

(Tk = - ~ ,  (bk, qk -- bzkql), ~ ,  q~= 1, M << N (4) 
1=1 k=l  
l:P k 

with 
mkl 

bkt = ~ bk / ( f l ) ,  m ~ , = m t k  (5) 
B=I 

and corresponding transition fluxes 

Yk,( * 8 )  = -- Y,k( /3) = bkz( /3)qe - bz~( /3)q, (6) 

The q's and b's are again to be interpreted as probabilities and transition 
probabilities, respectively; however, note that qi is not necessarily equal to 
Pi, since the states involved in Eqs. (4)-(6) are not in general identical with 
those in Eqs. (1)-(3). 

3. E X A M P L E S  

We now proceed to give three simple examples where, after the 
elimination of fast-relaxing variables from Eq. (1), the Jo.(oO [Eq. (3)] may 
not all be expressed in terms of the Y)~t(/3) [Eq. (6)]. 

3 .1  �9 

As a first example, let us consider the case where all n~ = 1 in Eq. (2) 
and the transition probabilities aN,N_l, aN_I,N, aN_I,N_2, aN_2.N_ 1 are 
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several orders of magnitude larger than the other a~j of Eqs. (1)-(3). [We 
have dropped the index a from a~j(a) since it is always 1.] For long times, 
the following relations hold approximately(2'3) : 

aN,N_lP N = aN_1,NpN_ 1, aN_I,N_2PN_ l = aN_2,N_lPN_ 2 (7) 

Upon defining a new probability 

qu = PN-2 + PN- 1 + PN (8) 

PN-2, PN-1, and PN may be expressed in terms of qM; substitution of these 
results into Eq. (1) yields Eq. (4), where 

M = N - 2 ,  qk = Pk, k < M - 1  

f l, k <  M - I ,  l <  M - 1  
rnkt= 3, k < M - 1 ,  I=  M 

3, k =  M, 1< M -  1 

bkt(1) = ak~, btk(1 ) = ark; k < M -  1, l < M - 1 (9) 

= bM (1) - -  

b~M(2) = ak,N_l ' bMk(2)  aN_2,N_laN,g_laN_l,~/Sl~ k < M -  1 

bkM(3)=akN, bMk(3) aN-2,g-laN-L,NaNk/S J 

S = a N _ 2 , N _ I a N _ I ,  N "-[- a N _ 2 , N _ I a N , N _  1 "t- a N , N _ I a N _ I , N _ 2  

Comparison of the transition fluxes of Eq. (3), expressed in terms of the qk, 
with those of Eq. (6) yields 

J/j=Yy(1), i < M - 1  and j < M - 1  

= 

Ji'N_ ~1 = YiM(2)[ i < M -  1 (10) 

Y,M<3) j 
JN-2,N-1 = JN-l,N = 0, by assumption 

Thus, all of these fluxes J~ are nicely expressed in terms of the Ykz(fl). 
However, there is one remaining flux in Eq. (3), which is given by 

JN-2,N = (aN,N-laN-1,N-2aN-2,N -- aN,N-2aN-2,~-IaN-l,N)q~t/s (11) 

AS can easily be seen, this flux cannot be expressed in terms of the 
parameters and variables of Eqs. (4)-(6). Thus, after the elimination of 
fast-relaxing variables through Eqs. (7) and (8), the fluxes J/j of Eq. (3) are 
not completely described by the fluxes Ykt(fl) of Eq. (6). This is so, since 
the assumption that the transition probabilities of Eq. (7) are several orders 
of magnitude larger than the other a~ does not in general affect the order of 
magnitude of JN-2,N" 
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For future considerations it is useful to note that the thermodynamic 
force X for the net flux around the cycle N---> N - 1 ---> N - 2 ---> N is given 
by(2, 6) 

e x / k T  = a N ' N - l a N - I ' N - 2 a N - 2 ' N  (12) 
aN,N-2aN-- 2,N- IaN-  I,N 

where k is the Boltzmann constant and T is the temperature in K. Thus, we 
may write 

JN-2,N ~ ( e x / k r  -- 1)qM (13) 

3.2. 

As a second example, let us again consider the case where all n,j = 1, 
but we now assume that at least one term in 

N 

~a aN- l ,  j 
j = l  

j ~ N -  1 

other than a s _  1,N and at least one term in 

N - I  

ZaN+ 
j = l  

other than aN, N_ ] are several orders of magnitude larger than the other a 0 
(with the possible exceptions of as,N-] and a N_ !,U). PN and PN-] are then 
"transient intermediates ''(2) and may be eliminated for long times by 
setting PN = PN- 1 = 0 and using the results to substitute for PN and PN- l in 
the other p,.. Equation (4) is then obtained with 

M = N - 2 ;  q k = p ~ ,  k < M ;  m~t = 5; k a n d l < M  (14) 

It  is left to the reader to supply the rather involved expressions for the 
bkgB). 

On comparison of the Jq as functions of the qk with the Ykl(fl), it is 
found that all J/j for i a n d j  < M may be expressed in terms of the Ykt(fl) ,  
but that any of the J~j for which i or j = N or N - 1 involve at least one 
term of the form 

J~ = (ak,u_lau_l ,uaNk -- a~uau, N _ l a N _ l , k ) p k / S  (15) 

where 

S = aNl Z a N-  1,l q- aN, N-- 1 ~ ,  aN-- l,l q- aN-  I,N aNt 
/=1 l ~ l  l = l  

and 

l < k < M  
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Thus, any of the Jv which involve state N - 1  or state N cannot be 
expressed completely in terms of the Y~l(fi). 

In a manner similar to the previous example, we note that 

J~ ~: (e  xUkT  - 1)pff (16) 

where X~ is the thermodynamic force for the net flux around the cycle 
k- - )  N -  l ~ N - - )  k : 

e x?'/kT = ak 'N- 'aN- l 'NaNk  ( 1 7 )  

akNaN,N- laN - ,,k 

3,3. 

Since the two previous examples have both had all n,j = 1, we should 
consider one last simple example with multiple pathways in Eqs. (1)-(3). 
We take 

N = 4, nl2 = n34 = 2, n13 = n24 = 1 (18) 

and assume that 1 <--)4 and 2~-~ 3 transitions are not allowed. We further 
assume that transitions 1 <-->2 and 3 <--)4 by pathway 1 occur by the same 
process, that the same is true for pathway 2 for these transitions (although 
pathways 1 and 2 represent different processes), and that transitions 1 ~ 3 
and 2<-+4 also occur by an identical (but distinct from the other two) 
process. Detailed balance at equilibrium is then satisfied by writing 

a34(1  ) = ~ b a l 2 ( l ) ,  a 4 3 ( 1 )  ----- cuba21(1) 

a34(2 ) = ~al2(1), a43(2 ) = e~a2 , (2)  (19) 

a24 = + a , 3  , a42 ----- eU~a3, 

[Two comments: (i) the stationary state of this example will not be an 
equilibrium one unless a12(1)a21(2 ) = a2,(1)a12(2); (ii) in general, it would 
be possible to have distinct ~,'s for each of the pathways for 3~-~4 
transitions; we have assumed q'l = if2 = ~ for simplicity.] 

From Eqs. (1) and (19), we see that P4 may be eliminated for long 
times as u ~ oo.(2) In this limit, upon setting/~4 = 0, we obtain Eq. (4) with 

M = 3, qk = Pk, k ~< 3, mt2 = 2, m13 = 1, m23 = 2 

bkt ( f i  ) = ak t ( f l  ), k = 1, l - -  2,3 

b23(1) = oa,3a2,(1) ,  b3 (1) = .a3 ,a ,2 (1 )  

b23(2  ) = aa13a21(2), b 3 2 ( 2 )  = oa31a12(2 ) 

o = ffqJ{ffa3a + ~[a2 , ( l )  + a21(2)] ) 

(20) 
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The transition fluxes of Eq. (3) are given adequately for long times in terms 
of those of Eq. (6) except for 

./34(l) = - Y23(1) -k- J*, ./34(2) = - Y23(2) - J* 
(21) 

J* = ~b2[at2(1)a2'(2) - a21(1)a,2(2)] 

~Pa3 ' + ~[a2,(1) + a21(2) ] q3 

As in the other two examples, there is a contribution to some of the Jo(a) 
which cannot be expressed in terms of the Y~l(/3). We also note that the 
missing contribution is related to the thermodynamic force X* for the cycle 

3 (~4(~3:  

J* oc e~X*/kT- 1)q3 (22) 

Because of the simplicity of this example, a further interesting calcula- 
tion may easily be made. The total net rate of the process by which the 
transitions 1<-+2 and 3 <--~4 occur via pathways (1) is given by 

J(1)  = J,2(1) + J34(1) (23) 

Further, we see from Eq. (21) that J* contributes to this rate. At the 
stationary state (in the limit u ~ ~) ,  we find 

J~ 
J(1)  {~a3~ + 

As ~ becomes large, this ratio 
from Eqs. (4)-(6), is the only 

 2a,3[ a2,(1) + a2,(2)] 
(24) 

q~I a2,(1) + a=,(2)] }(a3, + ~a,3) 

goes to unity, and J*, the flux not obtainable 
significant contribution to J(1). 

4. FLUXES, EQUILIBRIUM AND NONEQUILIBRIUM 
STATIONARY STATES, AND ENTROPY PRODUCTION 

Three examples have been given where the transition fluxes of Eq. (6) 
corresponding to the dynamical evolution equations (4) do not offer an 
adequate expression of the transition fluxes of Eq. (3) corresponding to the 
evolution equations (1) for long times, when Eq. (4) has been obtained from 
Eq. (1) by the elimination of fast-relaxing variables. In the last example, it 
was also seen that the missing flux may be the dominant one. With the use 
of the concept of cycle fluxes ~2'6) some insight into when this problem 
arises can now be offered. 

On inspection of the kinetic diagrams ~2) of the dynamical evolution 
equations (1) and (4) for the three examples, it can be seen that the 
elimination of fast-relaxing variables has also eliminated cycle(s) from the 
diagrams. In the first example, the cycle N---~ N -  1--~ N -  2--~ N was 
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eliminated; in the second, the cycles [--~ N - 1 ~ N --~ i, i < N - 2; and in 
(D (2) 

the third, the cycle 3 ~4--~3.  We have already noted that, in all three 
cases, the missing fluxes J,j(a) which cannot be expressed in terms of the 
Y~l(fi) are proportional to factors of the form (e x / k r -  1), where X is the 
thermodynamic force for the eliminated cycle [Eqs. (13), (16), and (22)]. 
Furthermore, we note that the eliminated cycles are represented in the 
evolution equations (4) by a single state: state M in the first example; state 
i, i < M, in the second; and state 3 in the third. In fact, if the fluxes for the 
eliminated cycles are calculated for the stationary state, (2) it is seen that the 
missing fluxes are contributions to the eliminated cycle fluxes in the second 
and third cases [Eqs. (16) and (22)], and that the missing flux in the first 
example [Eq. (13)] is identical to the eliminated cycle flux. 

It is also to be noted that, if the thermodynamic force for an elimi- 
nated cycle vanishes, then the net flux around the cycle vanishes in the 
stationary state, as do the fluxes J0.(a) [Eqs. (13), (16), and (22)] which 
cannot be expressed in terms of the Ykt(/~). Thus, the fluxes Jq(c 0 will all 
be represented adequately for long times by the Ykl(/3) if all cycles have 
zero thermodynamic force and, therefore, the system has an equilibrium 
stationary state. (2'6) On the other hand, the Ykt(fl) will not give an 
adequate representation of the Jg(a) if an eliminated cycle has a nonzero 
thermodynamic force and the system has a nonequilibrium stationary state. 

It is reasonable to speculate that it is always the case that the Ykl(fi) 
do not yield an adequate representation of the Jij(c0 when the elimination 
of fast-relaxing variables which leads from Eq. (1) to Eq. (4) eliminates a 
cycle with nonzero thermodynamic force. Let us consider a two-state cycle 
such as that between states 3 and 4 in the third example. If all of the 
transition probabilities for this cycle are several orders of magnitude larger 
than the other aq(a), then one may write for long times (2'3) 

[a34(1 ) + a34(2)]f13 = [a43(1) + a43(2)]p4 (25) 

Upon definition of a new state of probability P3 + 194, Eqs. (4)-(6) are 
obtained with the cycle represented only by the new state. Thus, the cycle 
has been eliminated. However, it may be precisely because of fast fluxes 
around the cycle that Eq. (25) obtains, and these fluxes will not appear in 
Eqs. (4)-(6). If, on the other hand, the probability of state 4 may be 
eliminated because a43(2), say, is much larger than a34(1), a34(2), and a24, 
then the cycle is again eliminated. However, it is not implied that there is 
no flux through state 4, but rather, that if state 4 is reached, it relaxes very 
quickly to state 3 via pathway (2). Thus, if state 4 is reached from state 3 
via pathway (1), it is highly likely that a turn around the eliminated cycle in 
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the direction 3 ~ 4 ~  3 is completed. It is precisely a contribution to this 
cycle flux which is not represented in the Ykl(fl). 

Since it has been argued that the Yl, l ( f l )  will not provide a complete 
description of the Jo.(a) only when an eliminated cycle has a nonzero 
thermodynamic force, a small point regarding the Glansdorff-Prigogine 
stability criterion, (7) that the second-order variation of the entropy produc- 
tion around the stationary state be positive, is in order in the context of 
systems with nonequilibrium stationary states. From Schnakenberg's 
work, (6) we know that both Eqs. (1) and (4) satisfy this stability criterion. 
For the three examples considered, it can easily be shown that the entropy 
production (P) of Eq. (1) is related to that (Q)  of Eq. (4) by P = Q + P*, 
where P* is the entropy production corresponding to the fluxes not repre- 
sented in Eqs. (4)-(6). It can further be shown that P* is of the general 
form ~] iOi]gi, where the Pi are independent of the Pi. Thus, the second-order 
variation of P* around the stationary state, 82P *, = 0, so that 62P -'-- 62Q. 

This result is actually to be expected, since entropy production may be 
considered as the sum of a contribution due to changes in the internal state 
of the system and another due to coupling to reservoirs. It is the former 
which is decisive for the stability criterion, and it is the contribution which 
is due to population properties, which are adequately described by both 
Eqs. (1) and (4). The entropy production corresponding to those fluxes not 
represented in Eqs. (4)-(6), however, is part of that due to coupling to 
reservoirs. It is this coupling which allows for nonequilibrium stationary 
states. 

5. D I S C U S S I O N  

It is generally presumed that dynamical evolution equations of the 
form of Eq. (1) offer a complete description of a system, in that Eq. (1) 
itself describes the population properties and the fluxes of Eq. (3), which 
are deduced from Eq. (1) with the help of Eq. (2), offer a description of the 
rates of processes occurring in the system. However, we have demonstrated 
that this is not necessarily the case. The dynamical evolution equations (4), 
which are obtained from Eq. (1) by the elimination of fast-relaxing vari- 
ables, are of the form of Eq. (1), but the fluxes of Eq. (6) corresponding to 
Eq. (4) may not describe the fluxes of Eq. (3) adequately. In each case, the 
fluxes are defined from the evolution equations in a self-consistent manner. 
It can also be said that each case is thermodynamically consistent regarding 
its entropy production and second-order variation thereof. However, even 
though Eqs. (4)-(6) are obtained from Eqs. (1)-(3) in a manner which 
ensures that they are mutually consistent regarding population properties 
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and the Glansdorff-Prigogine stability criterion for long times, they may 
not be mutually consistent regarding fluxes and entropy production if the 
elimination of fast-relaxing variables also leads to the elimination of a cycle 
with nonzero thermodynamic force. 

Only rarely does one have available evolution equations which detail 
all the possible states of a system and whose corresponding fluxes would 
thus be ensured of giving a complete description of the rates of all processes 
occurring in the systeml As pointed out by Schnakenberg (6) for master 
equations, the states considered are usually the result of a coarse-graining 
procedure. In fact, in some disciplines (e.g., biochemistry(8)), coarse- 
grained descriptions are the ones of interest. In the terms of this work, most 
dynamical evolution equations are the result of the elimination of fast- 
relaxing variables. Thus, if the system under consideration has a nonequi- 
librium stationary state, one is not assured that the fluxes corresponding to 
the evolution equations offer a complete description of the rates of pro- 
cesses occurring in the system. 

There is a point of view that would say that any elimination which 
leads to an incomplete description of the rates of processes is simply 
invalid. However, this point of view ignores the considerations of the 
preceding paragraph, that the most detailed description available usually is 
already the result of several eliminations of fast-relaxing variables. It could 
further be argued, though, that as better experimental techniques are 
developed, more states of the system would be recognized, until, in princi- 
ple at least, one could eventually have a description detailing all states of 
the system. The fluxes corresponding to the evolution equations at this level 
would then offer a complete description of the rates of processes occurring 
in the system. This argument assumes, however, that the system under 
consideration belongs to what Elsasser (9) has called an "infinite universe of 
discourse." For a "finite universe of discourse," to which many biological 
systems, for example, may belong, there are many more quantum states 
available to the system than there are realizations of the system. For such 
systems, a description detailing all quantum states may not be attainable: It 
would not then be possible to obtain a quantum level evolution equation 
whose corresponding fluxes would be assured of giving a complete descrip- 
tion of the rates of all processes. 
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